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Simulating QCD with dynamical Wilson and staggered fermions §

Rajan Gupta
T-8, MS-B285. Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

[ present a summary of the work done during the last year by the Los Alamos lattice
collaboration (C. Baillie, R. Gupta, G. Kilcup, G. Guralnik, A. Patel and S. Sharpe)
to study QCD with the Hybrid Monte Carlo Algorithm. The specific questions we have
addressed are the finite temperature transition for both staggered and Wilson fermions
and screening in the heavy ¢ potential with Wilson fermions. [ also present a discussion

of the efficiency of the fermion update algorithm.
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1. Introduction

In this talk I will discuss the following five topics:

1) The finite temperature transition for 4 lavors of staggered fermions with emphasis on
finite size effects.

2) Tests of the Hybrid Monte Carlo Aigorithm (HMCA) at small quark masses for stag-
gered fermions.

3) Evaluation of HMCA for Wilson fermions and some first results for the finite temper-
ature transition.

4) Screening in the heavy qq potential in QCD for N, = 2 Wilson fermions.

5) Comparison of HMCA and Lang~vin algorithms

All the calculations were done using the HMCA [1] and to a large extent are studies
of the algorithm. The particular variation of the algorithm we use and its implementation
is discussed in [2] [3] and I direct readers to these for background. Also, the motivation
and physical significance of the calculations has been discussed before so in this talk I will
concenirate on new results, technical details and future prospects.

2. The finite temperature transition at m, = 0.1

This is a progress report on an ongoing study of the finite temperature trunsition
with 4 flavors of staggered fermions. Previous calculations show that on 4 x 6 lattices, the
transition is first order for all quark masses [4) . The data on 4 x 104, 4 x 12? and 4 x 147
Inttices at intermediate values of the quark mass 0.2 — 0.5 does not show a clear two state
signal, so the order is still a subject of debate (5] . In this talk I present evidence for a two
state signal (first order transition) at mg = (0.1 on up to 4 x 10% lattices. New results, the
time histories for (wloop), (wline), (Y\) on 4 x 10% lattices, are showa in figure 1. The
histograms of the data for (wline) at J. are shown in figure 2 and those for (Vy) in figure
3. By comparing the data obtained on different lattice sizes we conclude that large finite
volume corrections are present. The histograms for 4 % 10? lattice at .3 = 5 1325 still show
a double peak stnicture but the two peaks overlap. From the tunnellings observed in the
time histories and from comparitive runs at 4 = 5.13 and 5.135 we conclude that the data
still shows a two state signal.

For large volumes the expected behavior at nfirst order transition is that the peaks get
unrrower and more clearly resolved as the spatial volume is inereased. Finite size scaling
at first order transitions predicts that finite volume corrections to the discontinuity i un
order parameter vanish as 1/volume. While our data is consistent with this behiavior, the
rate of decrense is large cnough to encompnss the case tunat there is no discontinuity in the
thermodynamie limit. Therefore we need to run on Iarger Inttices to settle whether the

transttion survives the infinite volume hont for mg = (.1



The up shot of the calculations done over the last year is that we need to undertake a
detailed and careful finite volume analysis in order to ascertain the order of the transition.
Since there are no clear general statements about the order (like a first order transition for
all values of my), it is important to do the finite volume study for the case of interest: two
light u and d quarks and one intermediate mass s quark. Also, this calculation should be
done at weaker coupling where scaling holds. Such a calculation is not possible with HMCA
{only multiples of 4 staggered flavors are allowed). It is also unrealistic to try to extract
hard numbers at strong coupling due to large flavor symmetry breaking effects. These
limitations are over and above the question of approximate algorithms. In the end the
first quantity that we will extract with good precision is the transition temperature since
the location of the transition is the easiest to measure. Meanwhile, we turn to a technical
exercise: does the strong first order transition seen at small quark mass (m, < 0.05) with
1 staggered flavors survive the infinite volumne limit. This study is also motivated by our
desire to understand the performance of HMCA at small quark mass.

There is still some lingering debate over whether one gets the same results using differ-
ent algorithms. The answer is obscured by the fact that different calculations use different
prrameters, scan the transition region in different ways and because the approximate algo-
rithms have errors. For example the critical value of 6/g? is shifted towards lower values
ot 6/¢* in runs using approximate algorithms. The magnitude of the shift depends on the
algorithm and the step size, and ranges from = 0.01 to 0.05, with the hybrid algorithmn
having the smallest error. Keeping this caveat in mind, [ believe that we are seing the
satne gross features in all sitmulations.

To facilitate comparison, let me end this section by stating what- we are doing that
is different from other groups: (1) we use an exact algorithm as does the FSU group (6]
and our results are in agreement. (2) We reduce the error in (Y\) by averaging over
25 psendofermion fields. Note that in the noisy fermion implementation of the Langevin
nnd hybrid algorithms, one only gets an estimator for (Yy) on a given background gauge
confignration. To the best of our knowledge no other group has used this variance reduction
trick. We consider this important because for mg 2> (.1, the Huctuations in the estimator

(Y\) measured with a single pseudofermion field are larger than the discontinuity.

3. Tests of HMCA at small quark masses:

In i3] we presented analytic arguments that showed that asymptotically the perfor
manee of HNMCA will slow down as V34 The extra power of 1/4 comes in becanse the
stepy size v hins to be deereased in order to maintain a constant acceptance. Inaddition, the
algonrithm has four other sourees of eritieal slowing down. (1) For fixed .3 and acceptinee
rate, ¢ hins to be decrensed with mg; (2) there is an inerenase in the nunber of iterntions

of n linear solver, say conjugate gradient algorithm, necessary to enlewnte (ML) Vo as
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a function of g and volume; (3) the decorrelation time increases as m, — 0 and (4) the
usual critical slowing down as ¢ — 0. In this talk [ give estimates for these and some of
the numerical data supporting the case.

(1) The step-size ¢ has to be decreased as my — 0. This is because the error in AH
integrated over a molecular dynamics trajectory depends on my, due to contributions to
P from the fermionic part of the action. The fermion action Sf = o'(M'M)7'o is
independent of m, since we update ¢ using the gaussian noise method. The leading term
in the step-size error in H is given by the third power of the derivistive of §¢ with respect
to the link variables U” (see eqn. 5.5 in ref [3] for details). Since each derivative of Sp gives
a power of 1/m, the total change in H integrated over a trajectory of length 1/¢ goes as

. 1/2
¢2/m3?. Thus ¢ has to be decreased as mq/

in the limit my, — 0. This is consistent with
our data: on 4 x 6% Iattices we had to use ¢ = 0.06, 0.026 and 0.011 at my = 0.1, 0.05 and
0.025 respectively in order to maintain = 70% acceptance. In these runs we carried out
tests with different precision to remove any extra factors that may require a decrease of
due to residual errors in the calculation (MA)™'o at any stage of the evolution.

(2)The number of conjugate gradient iterations increases as 1/mgy, i.c. they are dictated
by the lowest eigenvalue of the Dirac matrix.

(3) On decreasing m,, we estimate that the increase in de-correlation time grows like &
where & = 1/m,. This gives another factor of 1/m, in computer time. Putting all these
factors together HMCA degrades as 173/4/m33,

(4) The final source of slowing down that occurs as ¢ — 0 s due to the freezing of the
gauge fields. We have not done tests at different values of the 6/¢g? and I give a hand-
waving conjecture based on the previous statements. The simulation time per trajectory
at two values of 6/¢? that have the same lattice volume and pion correlation length should
only differ by a prefactor. However, note that as the coupling gets wenker. a fixed pion
correlation length correspoads to a heavier pion due to a change in the Iattice scale a.
Furthermore, in terms of decorrelnted trajectories, one expects at least the same growth
in auto-correlataions as for the pure gauge theory.

To conclude, even though HMCA combines the best features of Langevin and molec
ular dynmnics algorithins, it is no panacea. Major improvements can be made by devising
aigorithms for linear solvers that overcome the 1/mg slowing down in addition to redue-
ing the prefactor, and by finding n more efficient pre-processor than molecular dynamics
(none is known at present). The present best iterative algorithm for inverting the stag
gered fernnon matrix s straight-forward conjugate giadient and for Wilson fermions it s
ILU or preconditioned minimal residue with overrelaxation (7] . Unfortunately, our tests
show that these only reduce the prefactor. Of the new algorithms with potential, founier
neceleration does not give any significant improvement at these couplings and lathiee sizes
and multigrid s not vet a working scheme for QCD.



To evaluate the performace of HMCA at small quark masses we again decided to study
the finite temperature transition. We find that to sit on top of the transirion fobserve thp
Hops) requires eareful tuning. Even though 3,4 is a free parameter as far as the final dis.
tribution is concerned, it needs to be carefully tuned to observe phase transitions especially
when the transition is sharp and when data from a finite run is analysed. Emperieadly we
find that one should try to tune 4,4 to the value at which the transition occurs for the
uncorrected hybrid algorithm and then tune .3 to get equal population in the two phases,
Since this not a well defined process we had to make a number of runs in close vicinity of
the transition. We find that at mg = 0.023, the transition is sharp and consequently the
nature of the flip-Hops changes on changing either .3 value by as little as 0.002.

Our data for the tune histories at the transition for my = 0.05 and 0.025 are shown
in figure 4 and 3. Note that the transition occurs at larger J than with approxinate
algorithims — - a feature now observed in all studies.

The study of the finite temperature transition at small masses also allowed us to
address another technical question about HMCA: to what accuracy does one run the
inversion in order that there is no bias iu the configurations generated? In the molecular
dynamies evolution steps, this question is relevant only for the case when we use a smart
guess for \ = (M)~ "o rather than doing a fixed number of iterations starting from a
constant initial guess for . We give two tests: (1) For the HMCA. the unbiased Boltzmann
distribution satisfies the identity first pointed out by Creutz |8

(e3y =1 . (3.1

We tind that for low convergence criterion this identity is visibly violated. 1t i~ therefore o
very useful test and should be monitored during the mun. (2) In the accept /et step, AH
should lie mostly in the interval [-1,1] independent of the lattice volume in order to mmntaim
x 70 acceptance, This final number is a result of cancellation between thiee pumbers of
OC10%) for n 10% lattice, By running a few trajectories with different convergence criterion
one ean guickly decide what is safe since AH is once again very sensitive to the accuraey.
This test also vaises the issue of machine precision: for 32 bit machines, it will be necessary
to break up the global sums (dot products of vectors over the whole lattice) into sums over
time slices and then accumulate these. In the linear solver, information propagates loeally
and this imvolves operations bretween numbers that are all of the same order of magmtude
Soone does not a priori expect that 64 bit precision is necessary . However, to readly decide
whether the solution converges to a desired precision with 32 bit words we need moze tests

at smndl quark mass.

4. Finite temperature transition with Wilson fe-rmions

In order to ealenlate the hadronie properties from lattice QCD nang o fast and telinble



algorithm that incorporates the effects of dynamical Wilson fernuons. one needs to first
determine
a) For a given coupling .3 = 6/¢? the critical value of the hopping parameter. .., at
which the pion mass vanishes.
b) for a given G/g? and ~ (which specifies the lattice spacing a), the position of the finite
temperature transition r.e. Ny = 1/(T.a) where T, is the transition temperature in

physical units. Note that N[ as defined above need not be an wteger.

These two calculations provide 1) a rough estimate of the scale (through T,.). 2) determine,
hased on experience with pu v gauge simulations, what lattice size should be used to avoid
severe finite size effects and 3) indicate the interesting physical region where the u and d
quark masses are small and acuum polarization effects should be dis(ﬂrrmhlv.

| estimate that with current algorithms and available computer power the range of
G/g° that can be explored in the next {few yvears using small dynamical quark asses is
6/¢g* € 5.3.5.6]. This range corresponds to pure gauge simulations carried out in rhe
range G/y® ~ [3.6.6.1]. Present results of pure gauge simulations show that one starts to
make contact with continnum physices for 6/¢2 > 6.0. Thus a crude extrapolation from
pure gauge results suggests that it will be possible to simulate QCD with light dynamical
fermions close to the scaling region in the next few vears. Here, I present our first results
towards this goal with 2 flavors of Wilson fermions.

We chose 6/9¢ = 5.3 for our first runs because we wanted to test the algorithm at
stall quark mnsses and to get a glimpse of the effects of dynamical fermions. For this we
had to work at strong coupling to avoid finite size/temperature effects and poor statisties
dne to large auto-correlations. From a hadron spectrum analysis we estimate that the
chiral limit for 6/¢¢ = 5.3 is at =, = 0.169 [9] . Our first goal is to locate the transition
for Ny = 4 and G. In figure 6. | show the time history at & = 0.15375. the transition point
for Ny = 4. For comparison. the histograms for (wline) at x = 0.157. 0.1575 and 0.158 are
shown in fignre 7. The hysteresis study for |V, = 6 is not yet complete and our preliminary
estimate of the transition is & = 0.167. This value of & corresponds to roughly the strange
quark mnss for the zero temperature theory. The bad news is that nt this mass (which
i~ ~till rather heavy) the algorithm is already severely affected by the small eigenvadues of
the Dirac operator and configurations evolve very slowly.

The one big surprise from this study s that the N, = 4 transition for 2 Wilson
Havors oceurs ot much heavier quark mass than for the staggered case. The Wilson mass
e dogil « 0O5C1/k = Uk ) fora = 01575 with &, = 0,169 is = 0.22. An estimate for
the loention of the transition for the 2 Havor staggered case is mga = 003 for Ny 4 and
1 - 53 Thave exteacted this munber from the study by Gottlieb et al. after making some
allownnee for the expected shaft in J, on going from hybnd to HMCA simulations. If. on the

other hand, we determine the equivident staggered mass by equating the hadiron spectnm
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then mga = 0.1. These two estimates highlight a subtlety: in hadron mass calculations
the predominant effect of quark loops is to dress the valence gquark propagator. This
is exemplified by the successful use of the phenomerological mass formulas involving the
constituent quark mass instead of the carrent mass. In the confined phase, chiral symmetry
is spontaneously broken for both pure gauge theory and full QCD and low energy gluons
provide the dominant contribution to the dressing; consequently. the hadron spectrum is
not vastiy affected by the sea quarks. The remaining difference (0.1 versus 0.22) in the
estimate of the quark mass is analogous to that seen in quenched calculations of the hadion
spectrum between the two types of fermions [10] .

The important lesson here is the difference in the matching staggered mass as es-
timated from three observables: (1) the chiral transition. (2) Wilson loops and (3) the
hadron spectrum. This is an indication of very large lattice effects between the two kinds
of fermions and also due to the flavor symmetry breaking for staggered fermions at strong
coupling. Note that it is mainly in the calculation of the determinant (or it tc some power)
that the flavor symmetry violation produces the largest effect and the resultant configura-
tions correspond to a heavier effective sea quark mass. These features should be kept in
mind in analyzing the contribution of sea quarks.

5. Screening in the heavy ¢ potential

Confinernent in pure gauge QCD is visualized as the formation of a color electric
Hux-tube between two isolated static quarks. The strength of this linear confinement
ts characterized by the string tension. and a simple phenomenological spin-independent
potential is taken to have the form a/r + or. This picture changes when dynainical quarks
of mass m are included. It becomes favorable for the string to break due to the creation
of a ¢ pair from the vacuum when the energy in the string exceeds 2M . where M is the
constitnent mass (except when the mesons formed are pions). The resulting configuration
is a pair of mesons interacting througls a screened potential. Thus the shape of the potential
one extracts from lattice QCD depends on the dynamical mass m. For very heavy quarks.
one expeets little deviation from the pure gauge potential for separation r < \M/(27)
except for a renormalization of the seale. For physieal u and d quark mass, one expects
the linear nise in the potential to cease at the length seale of confinement = 0.5 - 1 ferme.
The goal of lattice simulations is to map out the potential so that we can predict the
topotm spectra.

We performed simulations on a §* lattice at six values of & = 0,156, 0,158, 0.160),
0162, 0,165, 0.167. We restnicted our ealeulations to 6/g2 = 3.3 i order to mensure
seto temperature vilues even at the lowest quark mass. For & > 0165 we find that the
convergenee of matrix inversion is severly affected by small modes i the Dirae operator

and the auto correlation time becomes large (we conld not measure it reliably butar could



be as large as a few hundred trajectories). Thus a better algorithm and substantially more
computer time is requiied to probe the smaller quark mass region.

The Wilson loop expectation values are given in table 1. Since we can barely measure
1 x 4 loops it is not possible to extract a potential reliably. Therefore, we first study a
simpler problem: the behavior of Wilson loops as a function of the quark mass in order
to expose the screening effect of dynamical quarks. To do this we match loop expectation
values against the pure gauge data and analyse the shift of the pure gauge coupling. A.J,
as a function of the loop size and the quark mass.

Theoretically, we expect that in addition to an overall renormalization of the bare
coupling 6/¢° . the presence of dyvnamical quarks change the area law for large Wilson
loops, found in pure gauge theonies. to a perimeter law. Thus, in the matching process the
effect of vacuum polanzation should become discernable at some loop size which depends
on the quark mass. For loops with an area larger than this size we expect to find that
AJ — x as 4drea — x because loops measured in presence of dynamical quarks are not
supressed by the area term. This effect should become more pronounced with decreasing

quark mass and should start occuring at smaller loop area.

[ < Wilson Loop > with 2 flavors

kappa | 0.1560 0.1580 0.1600 0.1620 0.1650 0.1670

nconf 900 1340 1020 1350 1710 2370
I1x1 [9.4847(3) [ 0.4909(2) | 0.4957(2) | 0.5016(4) | 0.5152(6) [ 0.5299(6)
1x2  10.2472(3) [ 0.2548(3) | 0.2606(3) | 0.2679(5) | 0.2852(5) [ 0.3047(4)
1x3  [0.1274(3) | 0.1337(2) [ 0.1386(2) | 0.1451(4) | 0.1604(4) | 0.1785(4)
Ix4 [0.0658(2) |0.0703(2) [ 0.0740(2) {0.0788(3) | 0.0905(3) [ 0.1050(4)
2x2  [0.0712(2) 1 0.0770(2) [ 0.0812(2) [0.0870(4) | 0.1014(4) | 0.1195(4)
2x3  [0.0214¢1) [ 0.0245(1) | 0.0267(1,) | 0.0299(2) [ 0.0385(3) | 0.0507(3)
2x4 1 0.0065(1) | 0.0079(1) | 0.0089(1) |0.0105(2) [ 0.0149(2) | 0.021(2)
3x3 10.0040(1) [ 0.0051(1) | 0.0058(1) | 0.0070(1) ]| 0.0105(1) | 0.0169(2)
3x4 [0.0007(1) ]10.0011(1) | 0.0013(1) [ 0.0016(1) | 0.0031(1) | 0.0060(1)
4x4 [ 0.000001) [0.0001(1) | 0.0002(1) | 0.0004(1) | 0.0007(1) [ 0.0020¢1)

Table 1:  Wilson loop expectation values for for two fAavors of Wilson fermions as a

function of the loop size and

In table 2 we show the shift in the pure gange coupling required to mateh a given
Wilsou loop expectation value as a function of loop area and for the six values of ~. The
~huft i 1 x 1 loops is mucly Inrger than that predicted by the lowest order hopping parameter
TR

eXpanson 1. Also, the A mereases as a function of the loop’s area and as the

S



AJ from linear interpolation
kappa | 0.1560 0.1380 0.1600 0.1620 0.1650 0.1670
1x1 0.155(1) [0.177(1) | 0.196(1) | 0.218(2) [ 0.266(2) | 0.320(2)
1x2 [0.160(1) {0.184(1) | 0.203(1) | 0.226(2) | 0.277(1) | 0.335(1)
1x3 0.162(1) | 0.187(1) | 0.206(1) | 0.229(2) | 0.282(1) | 0.341(1)
1x4 0.162(1) | 0.188(1) { 0.208(1) | 0.231(2) | 0.284(1) | 0.34-4(2)
2x2  10.165(1) {0.192(1) | 0.212(1) ] 0.236(2) | 0.289(1) { 0.353(2)
2x3 0.166(1) 10.197(1) | 0.216(1) [ 0.240(2) | 0.295(2) | 0.363(2)
2x4 [ 0.165(2) {0.200(2) | 0.218(2) | 0.243(2) | 0.298(2) | 0.368(2)
3x3 | 0.171(2) |0.202(2) | 0.222(2) | 0.246(3) | 0.301(2) | 0.375(2)
3x4 0.167(8) 10.209(7) | 0.224(4) | 0.243(7) ( 0.306(4) | 0.381(3)
x4 - - 0.209(27) | 0.266(13) [ 0.308(13) | 0.401(6)

Table 2:  The shift in pure gauge J necessary to matck Wilson loops with two flavors of
sea quarks as a function of the loop size and .

quark mass is decreased. This is shown in figure 8 where we plot A3 — AJ(1 x 1) versus
loop area for the six values of x. No error bars are plotted since the data is given in table
2. The effect is barely significant for x = 0.156 — 0.162 and clear only at x = 0.167 :.e. at
or lighter than the strange quark system. To conclude, our data only qualitatively shows

the expected screening behavior.

Previous studies of screening can be divided into two categories: Fukugita et al. do
not see a marked difference in Wilson loop expectation value compared to pure gauge
results other than an overall shift in 6/¢g% (expected behavior for heavy quarks) while de
Forcrand et al [11] and Grady et al. [12] do. Unfortunately, some of the results of de
Forcrand et al. (3 degenerate Wilson flavors) are in the high temperature phase where the
expected screening is qualitatively different. The results of Grady et al. are for 4 tuggered
Havors and we believe that the reason that in their data the potential does not show any
mass dependence is because their efective quark mass is very large due to staggered Havor
svinmetry breaking. Our results do show the expected sereening behavior as a function of
the quark mass. To quazntify the effects of dynamical fermions on the 47 potential we have

to measure larger ioops at smaller mg and ¢g.

The above results have mmplications for other physical observables like the hadron
spectrum. If these are extracted from simulations done at & < 0.167 then there is hittle
aope of domg much hetter than the quenched approximation since the effect of the sea
quarks will be <mall.

)



6. Efficiency of HMCA versus Langevin

We present a numerical comparison of the efficiency of the HMCA and Langevin
algorithms using Wilson loops as probes. For the HMCA we measured up to 3 x 3 loops
at 6/¢y® = 5.5 and x = 0.15. For these parameter values we do extract zero temperature
results even ou a 64 lattice since the finite temperature transition for Ny = 1/T.a = G is at
~ % (.1365. The results using Langevin update are given by Fukugita et al. [13] for three
vilues of the step size, 87 = 0.02,0.01, 0.005. Tley also provided the 87 = 0 values using a
linear extrapolation of their data. The complete data are given in table 3. One finds good
agreemnent between the two calculations and for algorithm comparison we assume that the
error est:mates are reliable and equal to first approximation. Therefore, to estimate the
CPU time for the two calculations we simpiy add up the total number of time steps. Note
that cach fime step requires a matrix inversion which accounts for = 90% of the total CPU

tume. This inversion can be carried out using the same optimal algonithm in both cases.

The HMCA calculation used 80 trajectories of length 40 (with a step size € = 0.04)
for a totiu of 3200 steps. The results of Langevin simulation show very large step size
errors, i.e. the 3 x 3 loop expectation value changes by over 100% between 87 = 0.02 and
0.0 (this is one reason why Langevin evolution is not a good preprocessor for HMCA).
Thercfore, we shall assume that Langevin simulations need to be done at at least three
vaiues of 87, Fukugita et al. evaluate expectation values over 20,30,20 configurations with
ot = 0.02,0.01,0.005 respectively for a total of 8000 steps (20*50 + 30*100 + 20*200).
The two simulations used lattice volumes different by a factor of = 4 (6 x 8 for HMCA
versus 9% x 18 for Langevin). Assuming that CPU time grows like V3/4 the HMCA will
require 2 6 times as long on a 9% x 18 lattice. This factor of six will be partly offset by
the gain in statisties due to the larger volume and the absence of thermalization overhead
of multiple &+ runs.

L()np i or =0.02 or =0.01 ot = 0.005 —46r = (0.0 HI\ICA

1 < 1| 0.5137(9) | 0.5257(7) | 0.5330(9) | 0.5389(10) | 0.5384(10)
1 x 210.2799(9) | 0.2958,7) | 0.3053(9) { 0.3131(13) | 0.3125(15)
1 x 3| 0.1548(8) | 0.1689(7) | 0.1779(8) | 0.1848(11) [ 0.1845(135)
2 x 2] 0.0947(9) | ¢.1080(9) [ 0.1165(12) | 0.1228(12) 0.1227(16)
2 % 3] 0.0339(5) | 0.0419(5) | 0.0474(7) 0.0511(8) | 0.0516(11)
3 <31 0.0084(6) 1 0.0120(5) | 0.0144(T7) 0.0161(6) | 0.0164(5)

Table 3:

Comparison of the Wilson loop data with 2 flavors of Dynamical Wilson fermijons

at & = 013 and 3 = 5.5 The first three columns give results obtained by [13]using the

Langevin algorithm while the forth is the Linear extrapolation of their data to dr

fifth column gives our results using the HNCA algorinthm.
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The above crude analysis shows that for gluonic observables HMCA is at least as
efficient as Langevin simulations. For calculations involving external quark propagators
(as in hadron spectrum and matrix elemeats calculations) HMCA gains in storage and
CPU since fewer configurations need to be analysed as there is no extrapolation ér — 0
needed. Finally, the fact that in Langevin simulations a linear extrapolation to zero step
size is still an approximation further tips the scale in favor of HMCA.

One of the criticisms leveled at approximate algorithms is whether they produce con-
figurations that are in the same universality class as QCD. The fact that we find agreement
with results from an exact algorithm when a simple linear extrapolation in 67 is used is
encouraging. However, we need an unequivocal answer (numerical “proof” will be hard
to cstablish). If universality holds for small 7, then we can forget about the 67 — 0
extrapoilation; instcad we should focus on showing that mass-ratios become constant as
g — 0 and mg — 0. I look forward to the next lattice meeting in anticipation of an answer
to this important question.
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